If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-t-11=0
We add all the numbers together, and all the variables
t^2-1t-11=0
a = 1; b = -1; c = -11;
Δ = b2-4ac
Δ = -12-4·1·(-11)
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-3\sqrt{5}}{2*1}=\frac{1-3\sqrt{5}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+3\sqrt{5}}{2*1}=\frac{1+3\sqrt{5}}{2} $
| w^2-7w+37w=0 | | 0.57142858t-0.071428571t=t-6.5 | | 6x+27=7x+9 | | 6x+27=x+96 | | 6x+27=7x−9=96 | | 4/t-1/14t=t-13/2 | | 2x+5+2x+3x=7x | | 15x-125=205 | | 2j-+5=9 | | 2j-+5=8 | | 2x+5+2x+3x=5 | | 13-7c=8-2c | | -56a+11.51=−34.25a+33.26 | | 7(2x+8)=126 | | 162=-16t^2+150t | | −56a+11.51=−34.25a+33.26. | | 3/5p+1/5(40-p0=0 | | 5m+7-7m=28 | | 2^2x-1=8^x-3 | | 10=n+8;n=2 | | -(4-w)+2(w-7)=-30 | | r+1.22=2.01 | | 7÷p-4=-8 | | Y3-y2-21y+45=0 | | -12-3n=-18 | | -3-6n=-15 | | 3/4p+6=12 | | r^2-50r+200=0 | | Y2-y-12=0 | | -3-6n=15 | | 7-3n=21 | | 30x-13x=17 |